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The attitude control of a spacecraft is one of the most critical factors to ensure mission success. 

Satellites must maintain a constant orientation in space due to their operational objectives, such as 

communication satellites with directional antennas or those that depend on precise solar panel 

alignment to maximise energy efficiency. It is very important to keep the satellite stable at a 

predetermined position in space. To maintain this constant orientation and correct any disturbances, 

attitude control systems are used. The dynamics of such systems can be described using Newton's 

Second Law, which results in a set of non-linear equations for motion about the x, y and z axes. Due 

to their nonlinearity, these equations cannot be analysed directly using classical control methods 

based on transfer functions. PID (Proportional - Integral - Derivative) controllers are widely used in 

control systems, but their coefficients need to be determined appropriately. To obtain a suitable set 

of PID coefficients for satellite control via reaction wheels, the nonlinear system must first be 

linearised around a point close to the reference values. This ensures that the linear approximation 

accurately represents the system dynamics near the desired direction. This study aims to determine 

PID coefficients with respect to our desired control performance criteria. For this, the PID 

coefficients are calculated from the linearised system and applied to the original nonlinear model. 

For this calculation, the previously obtained linear model and actuator models are used. The PID 

coefficients are calculated by considering the desired settling time and overshoot. The PID 

coefficients are tested for linear and nonlinear models in simulation to show the effectiveness of the 

proposed approach. 
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Uzay aracının, özellikle uyduların yön kontrolü, görevin başarısını sağlamak için en kritik 

faktörlerden biridir. Uydular, yönlü antenlere sahip iletişim uyduları veya enerji verimliliğini en üst 

düzeye çıkarmak için hassas güneş paneli hizalamasına bağlı olanlar gibi operasyonel hedefleri 

nedeniyle uzayda sabit bir yönelimini korumak zorundadır. Uyduyu uzayda önceden belirlenmiş bir 

konumda sabit tutmak çok önemlidir. Bu sabit yönelimi korumak ve herhangi bir bozulmayı 

düzeltmek için yönelim kontrol sistemleri kullanılır. Bu tür sistemlerin dinamiği Newton'un İkinci 

Yasası kullanılarak tanımlanabilir ve bu da x, y ve z eksenleri etrafındaki hareket için bir dizi doğrusal 

olmayan denklemle sonuçlanır. Doğrusal olmamaları nedeniyle, bu denklemler transfer 

fonksiyonlarına dayalı klasik kontrol yöntemleri kullanılarak doğrudan analiz edilemez. PID 

(Oransal – İntegral - Türev) kontrolcüleri kontrol sistemlerinde yaygın olarak kullanılır, ancak 

katsayılarının uygun şekilde ayarlanması gerekir. Reaksiyon tekerlekleri aracılığıyla uydu kontrolü 

için uygun bir PID katsayıları kümesi elde etmek için, doğrusal olmayan sistemin önce çalışma 

noktasına yakın bir değer etrafında doğrusal hale getirilmesi gerekir. Bu durum, doğrusal yaklaşımın 

istenen yönelim yakınındaki sistem dinamiklerini doğru bir şekilde temsil etmesini sağlar. Bu 

çalışma, reaksiyon tekerlekleri ve doğrusal hale getirilmiş sistem modeli kullanarak uydular için 

optimal PID tabanlı bir yönelim kontrol sistemi geliştirmeyi amaçlamaktadır. Bunun için, PID 

katsayıları doğrusal hale getirilmiş sistemden hesaplanarak orjinal doğrusal olmayan modele 

uygulanır. Bu hesaplama için önceden elde edilen doğrusal model ve eyleyici modelleri 

kullanılmaktadır. İstenen oturma zamanı ve aşım değerleri göz önünde buludurularak PID katsayıları 

hesaplanmaktadır. Hesaplanan PID değerleriyle çalıştırılan simülasyonlar, kontrolcünün düşük aşım 

ve minimum hata ile kararlı bir performans elde ettiğini göstermektedir. Sonuçlar, bu yöntemin 

verimli uzay aracı yönelim kontrolü için etkinliğini doğrulamaktadır. 
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INTRODUCTION 

The attitude control of a spacecraft, particularly for satellites, is one of the most critical factors 

for ensuring mission success. Satellites often need to maintain a fixed orientation in space due to their 

operational objectives such as communication satellites with directional antennas or those that rely on 

precise solar panel alignment to maximize energy efficiency. So, attitude control is extensively studied 

in the literature because it is essential to keep the satellite stable at a predetermined position in space 

(He & Wu, 2021). 

To maintain this fixed orientation and correct any disturbances, attitude control systems are 

employed. These systems often use active control mechanisms such as reaction wheels, gyroscopes, 

thrusters, or magnetorquers. The dynamics of such systems can be described using Newton’s Second 

Law, resulting in a set of nonlinear equations for motion about the x, y, and z axes. Due to their 

nonlinearity, it is a challenge to overcome the control problems effectively (Kuznetsov et al., 2022). 

PID (Proportional-Integral-Derivative) controllers are widely used in control systems, but they 

require appropriate determination of their coefficients (Borase et al., 2020; Çopur et al., 2024). 

Conventional PID coefficients determination methods, such as Ziegler-Nichols, Modified Ziegler-

Nichols, Tyreus-Luyben, and the method proposed by Astrom and Hagglund, do not always provide 

optimal performance across different systems (Köprücü & Öztürk, 2024). Besides, these methods need 

linear systems to determine the PID coefficients. 

There are many control studies for spacecraft attitude control in open literature. As an alternative 

to PID, Fuzzy Logic controller, adaptive fuzzy logic controller and Fuzzy tuned PID are tested and 

compared to classic PID controller (Shan et al., 2022; Calvo et al., 2016; Prajapat & Mandloi, 2014). 

Although the Fuzzy and adaptive Fuzzy controllers are more effective than conventional PID in terms 

of error minimization and response time, they tend to consume more energy, which is a significant 

drawback in space applications where power is limited, and efficiency is vital. Besides, they must be 

within a certain operating range of the system to operate at high performance. The PID coefficients are 

optimized by Genetic Algorithms to reach best performances (Daw et al., 2017). It is seen that the 

Genetic algorithm optimizes the system with respect to the control performance parameters such as 

minimizing the settling time, rise time etc. However, it is much easier to perform analytical calculations 

for linear systems when a certain performance of control is desired. Sliding Mode Control (SMC) based 

approaches are tested for attitude control by Chen and it is seen that the SMC is superior to classical 

PID controllers (Chen & Hu, 2022). But it is seen in the open literature that the SMC approaches must 

overcome chattering problem, so new approaches like Super Twisting SMC should be tested for the 

attitude control structures. 

To obtain analytically a set of suitable PID coefficients for satellite control via reaction wheels 

for desired performance criteria, the nonlinear system must first be linearized around a value close to 

the operating point. This ensures that the linear approximation accurately represents the system's 

dynamics near the desired orientation (Moldabekov et al., 2023; Zhou, 2019). 

In this paper, an optimal PID-based attitude control system is developed for satellites using 

reaction wheels and a linearized model. To obtain analytically a set of suitable PID coefficients for 

satellite control via reaction wheels for desired performance criteria, the nonlinear system must first be 

linearized around a value close to the operating point. This ensures that the linear approximation 

accurately represents the system's nonlinear dynamics around the linearization points (Moldabekov et 

al., 2023; Zhou, 2019). The PID coefficients are determined from the transfer function of the linearized 

system and then applied back to the original nonlinear model to evaluate performance in terms of 

stability and overshoot.  
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Within the scope of this study, PID coefficients that will provide the desired control performances 

for the nonlinear model of the spacecraft are analytically calculated and tested. 

SPACECRAFT DYNAMICS 

This section presents the analysis of a three-axis stabilized communication satellite employing 

momentum wheels for attitude control in the presence of small constant environmental torques. The 

satellite maintains a fixed orientation with respect to the Earth using internal torques generated by 

electric motors connected to flywheels. The satellites must have at least three reaction wheels for a 3-

axis control if they are stated in the 𝑥, 𝑦, 𝑧 axes (Curtis, 2019). 

A momentum wheel is a spinning disk whose angular momentum can be varied by accelerating 

or decelerating the wheel via an electric motor. By Newton’s third law, any change in the wheel’s spin 

induces an equal and opposite torque on the spacecraft body. This internal exchange of angular 

momentum allows the spacecraft to reorient without expelling mass, unlike thrusters. 

 

General mass equation: 

𝑚 = 𝑚𝑜 + ∑𝑚𝑖

𝑖=1

(1) 

 

where 𝑚0 is spacecraft body mass, 𝑚𝑖 is mass of momentum wheels, 𝑚 is total mass. 

 

The total angular momentum of the spacecraft, 𝐻𝐺 , of both the fuselage and the momentum wheels  

includes angular momentum. 

 

The angular momentum equation: 

𝐻𝑔 = 𝐻𝑏𝑜ⅆ𝑦 + ∑𝐻𝑖

𝑛

𝑖=1

(2) 

 

where 𝐻𝑖 is angular momentum of momentum wheels, 𝐻𝑏𝑜ⅆ𝑦 is angular momentum of the 

spacecraft’s body. 

 

The angular momentum of each momentum wheel: 

 

𝐻𝐺
(𝑖) = 𝐼𝐺

(𝑖) × 𝑤 (3) 

 

 

Angular momentum of the spacecraft is given as: 

 

𝐻𝐺
(𝑏𝑜ⅆ𝑦)

= 𝐼𝐺
(𝑏𝑜ⅆ𝑦)

× 𝜔 (4) 

 

where 𝐻𝐺 is total angular momentum of the spacecraft around its center of mass G, 𝐼𝐺 is inertia 

tensor around the spacecraft’s center of mass,  𝑤 is angular velocity of the spacecraft’s body. 

 

If the spacecraft has asymmetry or different moments of inertia on different axes; 
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[

𝐻𝑥

𝐻𝑦

𝐻𝑧

] = [

𝐼𝑥 × 𝜔𝑥

𝐼𝑦 × 𝜔𝑦

𝐼𝑧 × 𝜔𝑧

] (5) 

 

The matrix form is expressed in this way: 

 

𝐻 = [

 𝐼𝑥𝑥 𝐼𝑥𝑦 𝐼𝑥𝑧
 𝐼𝑦𝑥 𝐼𝑦𝑦 𝐼𝑦𝑧
𝐼𝑧𝑥 𝐼𝑧𝑦 𝐼𝑧𝑧

] = [
𝜔𝑥
𝜔𝑦
𝜔𝑧

] (6) 

 

If no external torque is applied to the spacecraft, angular momentum is conserved. 

 

ⅆ𝐻𝑔

ⅆ𝑡
= 0 (7) 

 

• If it initially spins in a certain direction, it will continue to spin in that direction. 

• If it's not spinning, it won't start spinning. 

• This principle explains why objects moving in space (satellites and stations) maintain constant 

orientations, explains that it can hold or only gyroscopes, momentum flywheels, can change 

their direction. 

 

If there is an external torque effect: 

 

𝑀 =
ⅆ𝐻𝐺

ⅆ𝑡
= 0 (8) 

 

In this case, the angular momentum changes and the spacecraft turns to a different axis. 

Spacecraft Orientation with Momentum Wheel 

 

For objects moving in space, angular momentum is conserved because no external torque has no 

effect. 

 

𝐻𝐺 = 0 (9) 

 

When the angular velocity of the momentum wheels is changed, the spacecraft reacts in opposite 

direction does   

 

𝐻𝐺 = 𝐻𝑝 + 𝐻𝜔 (10) 

 

where 𝐻𝜔 is angular momentum of the spacecraft’s body, 𝐻𝑃 is angular momentum of momentum 

wheel, 𝐻𝐺 is total angular momentum of the system. 

 

Because the spacecraft and the momentum wheel are not initially moving. 
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[
𝐻𝜔

𝐻𝑝
] = [

𝐼𝜔 𝑥 𝜔𝜔

𝐼𝑝 𝑥 𝜔𝑝
] (11) 

 

Angular velocity of the spacecraft: 

𝜔𝑃 = −
𝐼𝜔
𝐼𝑝

𝜔𝜔 (12) 

Integration of a DC Motor into the Momentum Wheel-Based Attitude Control System  

In this study, a direct current (DC) motor is integrated into a spacecraft attitude control system 

that uses three momentum wheels mounted along the principal axes. The integration aims to enhance 

torque response and control authority, particularly on a selected axis. The DC motor operates with 

closed-loop feedback, using real-time data from onboard sensors like a star tracker to accurately apply 

torque and counteract external disturbances, ensuring stable spacecraft orientation 

 

𝑃(𝑠) =
𝜃̇(𝑆)

𝑣(𝑆)
=

𝐾

(𝐽𝑠 + 𝑏)(𝐿𝑠 + 𝑅) + 𝐾2
(13) 

where: 

b: Damping coefficient (
𝑁𝑚𝑠

𝑟𝑎ⅆ
), models the frictional losses in the system that opposes motion  

K: Engine constant (
𝑁𝑚

𝐴
) 

J: Moment of inertia of the rotor(𝑘𝑔𝑚2), represents the resistance of the motor shaft to changes 

in angular velocity 

L: Inductance represents the inertia to change in current in motor windings 

R: Armature resistance, the electrical resistance of the motor windings 

This transfer function represents the dynamic relationship between the input voltage 𝑣(𝑠) and the 

output angular velocity 𝜃̇(𝑠) of a DC motor, expressed in the Laplace domain. It incorporates both the 

electrical and mechanical dynamics of the motor. These subsystems are coupled through the motor's 

torque constant K, which links electrical input to mechanical output. 

The torque 𝜏 generated by the motor is related to angular velocity 𝜃̇(𝑡) by: 

𝜏(𝑡) = 𝐽𝜃̈(𝑡) + 𝑏𝜃̇(𝑡) (14) 

The applied voltage 𝑣(𝑡) is used to overcome resistive, inductive and back-EMF effects. 

𝜈(𝑡) = 𝐿
ⅆⅈ(𝑡)

ⅆ𝑡
+ 𝑅𝑖(𝑡) + 𝐾𝜃̇(𝑡) (15) 

where 𝐾𝜃̇(𝑡)is the Back Electromotive Force (EMF) opposing in the input voltage. The torque is 

also directly proportional to the armature current: 

𝜏(𝑠) = 𝐾𝐼(𝑠) (16) 

By applying Laplace transforms, the transfer function is obtained as: 
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𝜃̇(𝑠)

𝜗(𝑆)
=

𝐾

(𝐽𝑠 + 𝑏)(𝐿𝑠 + 𝑅) + 𝐾2
(17) 

Satellite Inertia Tensor 

The spacecraft has three identical momentum wheels. These wheels don't turn axes aligned with 

the spacecraft's primary body axes 

𝐼𝐺
(𝑣)

= [
𝐴 0 0
0 𝐵 0
0 0 𝐶

] (18) 

Inertia tensors of momentum wheels are: 

[𝐼𝐺
(1)

] = [
𝐼 0 0
0 0 0
0 0 0

]          [𝐼𝐺
(2)

] = [
0 0 0
0 𝐽 0
0 0 0

]          [𝐼𝐺
[3]

] = [
0 0 0
0 0 0
0 0 𝐽

] (19) 

The angular velocities of the spacecraft in 3 axes 𝜔𝑥 , 𝜔𝑦, 𝜔𝑧   and the momentum wheels are 

defined as 𝜔(1), 𝜔(2), 𝜔(3). Expression for total angular momentum 𝐻𝐺 is written as follows: 

{𝐻𝐺} = [𝐼𝐺
(𝜈)

] {𝜔} + ∑[𝐼𝐺
{𝜈}

] ({𝜔} + {𝜔𝑟𝑒𝑙
(𝑖)

})

3

𝑗=1

(20) 

This expression is simplified by substituting the inertia tensors and angular velocity values given 

above and is obtained in the following form: 

{𝐻𝐺} = [
𝐴 + 𝐼 + 2𝐽 0 0

0 𝐵 + 𝐼 + 2𝐽 0
0 0 𝐶 + 𝐼 + 2𝐽

] {𝜔} + [
𝐼 0 0
0 𝐼 0
0 0 𝐼

] ⋅ [
𝜔̇(1)

𝜔̇(2)

𝜔̇(3)

] (21) 

Solving the resulting equations for the angular accelerations of inertia wheels in 3 different axes  

then it is shown as below. 

[
𝜔̇(1)

𝜔̇(2)

𝜔̇(3)

] =

[
 
 
 
 
 
 
(𝑀𝐺)𝑥

𝐼
+

𝐵 − 𝐶

𝐼
ωyωz − (1 +

𝐴 + 2𝐽

𝐼
) ω̇x + ω(2)ωz − ω(3)ωy

(𝑀𝐺)𝑦

𝐼
+

𝐶 − 𝐴

𝐼
ωxωz − (1 +

𝐵 + 2𝐽

𝐼
) ω̇y + ω(3)ωx − ω(1)ωz

(𝑀𝐺)𝑧

𝐼
+

𝐴 − 𝐵

𝐼
ωxωy − (1 +

𝐶 + 2𝐽

𝐼
) ω̇z + ω(1)ωy − ω(2)ωx ]

 
 
 
 
 
 

(22) 

These equations cannot be directly used in system modelling due to their nonlinear nature. 

Therefore, it is necessary to first linearize the equations and then apply the Laplace transform. This 

process enables the derivation of the system's transfer function. A transfer function is defined, in linear 

systems with zero initial conditions, as the ratio of the Laplace transforms of the output function to that 

of the input function. 

By setting the denominator of the transfer function equal to zero, the roots of the characteristic 

equation can be obtained. These roots are referred to as the poles of the system. If all poles have negative 

real parts, the system is considered stable; however, if even one pole does not have a negative real part, 

the system becomes unstable. For a system to be stable, all poles must lie on the left half of the complex 
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plane. 

DESIGN OF CONTROL PARAMETERS 

In this paper, PID (Proportional-Integral-Derivative) control is applied, and to understand its 

implementation, it is important to first grasp the fundamental role of PID controllers in control systems. 

A PID controller continuously calculates the error between a desired setpoint and a measured process 

variable and then applies corrective actions based on three terms proportional, integral, and derivative 

to minimize this error. As reviewed by (Borase et al., 2020), PID controllers have been extensively 

studied due to their robustness and ease of application in both academic and industrial environments. 

The PID control consists of three terms as proportional, integral and derivative terms. 

The proportional term generates a control signal that is directly proportional to the current error. 

As the error increases, the controller’s output increases proportionally, which enables fast and intuitive 

response. 

Time domain        𝑢𝑐(𝑡) =  𝑘𝑃𝑒(𝑡) 

Laplace domain    𝑈𝑐(𝑠) =  𝑘𝑝𝐸(𝑠) 

The integral term eliminates steady-state errors by integrating the error over time. This ensures 

that even small errors are corrected cumulatively, resulting in a more accurate long-term response. 

Time domain        𝑢𝑐(𝑡) =  𝑘𝐼 ∫ 𝑒(𝜏)ⅆ𝜏
𝑡

0
 

Laplace domain    𝑈𝑐(𝑠) = [ 
𝑘𝐼

𝑠
] 𝐸(𝑠) 

The derivative term forecasts future error behaviour by considering the rate of change of the error. 

This predictive action helps to dampen oscillations and reduce overshoots.  

Time domain        𝑢𝑐(𝑡) =  𝑘𝐷
ⅆ𝑒

ⅆ𝑡
 

Laplace domain    𝑈𝑐(𝑠) = [ 𝑘𝐷𝑠]𝐸(𝑠) 

In this study, the coefficients are first calculated manually after the nonlinear system is 

transformed into a linear approximation. The manually derived linear coefficients are then implemented 

back into the original nonlinear system to evaluate their performance. This approach allows observation 

of how the linear coefficients perform in a nonlinear context and to analyze the differences and 

effectiveness of this implementation.  

System Linearization  

The nonlinear system shown in the equations (23) is linearized. By focusing on an operating point 

around zero, the system’s behavior is simplified, making the calculation of the PID coefficients easier. 

This step is essential for applying the PID controller effectively and improving the system’s 

performance. The equation (23) can be written as: 
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[

ω̇x

ω̇y

ω̇z

] =

[
 
 
 
 
 
(𝑀𝐺)𝑥

𝑎
+

𝐵 − 𝐶

𝑎
ωyωz +

𝐼

𝑎
ω(2)ωz −

𝐼

𝑎
ω(3)ωy −

𝐼

𝑎
𝜔̇(1)

(𝑀𝐺)𝑦

𝑏
+

𝐶 − 𝐴

𝑏
ωxωz +

𝐼

𝑏
ω(3)ωx −

𝐼

𝑏
ω(1)ωz −

𝐼

𝑏
𝜔̇(2)

(𝑀𝐺)𝑧

ⅆ
+

𝐴 − 𝐵

ⅆ
ωxωy +

𝐼

ⅆ
ω(1)ωy −

𝐼

ⅆ
ω(2)ωx −

𝐼

ⅆ
𝜔̇(3) ]

 
 
 
 
 

(23) 

 

for   𝑎 = 𝐼 + 𝐴 + 2𝐽  ,    𝑏 = 𝐼 + 𝐵 + 2𝐽   and     ⅆ = 𝐼 + 𝐶 + 2𝐽 

The Taylor series expansion is used to linearize the nonlinear system around zero. By retaining 

only the first order terms, a linear model is obtained which approximates the behavior of the system 

around zero. 

𝑇(𝑥) ≈ 𝑇(0) +
ⅆ𝑇

ⅆ𝑥
|𝑥=x0

(𝑥 − x0) +
ⅆ𝑇

ⅆ𝑢
|𝑥=x0

(𝑢 − u0) (24) 

This linear approximation simplifies the system for controller design. 

Under the assumption ω0
(1)

= ω0
(2)

= ω0
(3)

= ω̇0
(1)

= ω̇0
(2)

= ω̇0
(3)

= (𝑀𝐺)𝑥0
= (𝑀𝐺)𝑦0

=

(𝑀𝐺)𝑧0
= 0 

For first line in equation (23), the Taylor series expansion can be given as; 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑇0

ⅆ𝑇

ⅆω𝑦
|𝑥=𝑥0

ⅆ𝑇

ⅆω𝑧
|𝑥=𝑥0

ⅆ𝑇

ⅆ(𝑀𝐺)𝑥

ⅆ𝑇

ⅆω̇(1)
|𝑥=𝑥0

ⅆ𝑇

ⅆω(2)
|𝑥=𝑥0

ⅆ𝑇

ⅆω(3)
|𝑥=𝑥0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐵 − 𝐶

𝑎
ω𝑦0

ω𝑧0

(
𝐵 − 𝐶

𝑎
ω𝑧 −

𝐼

𝑎
ω(3)) |𝑥=𝑥0

=
𝐵 − 𝐶

𝑎
ω𝑧0

(
𝐵 − 𝐶

𝑎
ω𝑧 −

𝐼

𝑎
ω(3)) |𝑥=𝑥0

=
𝐵 − 𝐶

𝑎
ω𝑧0

1

𝑎

−
𝐼

𝑎
𝐼

𝑎
ω𝑧|𝑥=𝑥0

=
𝐼

𝑎
ω𝑧0

−
𝐼

𝑎
ω𝑦0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(25) 

so; 

ω̇𝑥 =
𝐵 − 𝐶

𝑎
ω𝑦0

ω𝑧0
+

𝐵 − 𝐶

𝑎
ω𝑧0

(ω𝑦 − ω𝑦0
) +

𝐵 − 𝐶

𝑎
ω𝑦0

(ω𝑧 − ω𝑧0
) +

𝐼

𝑎
ω𝑧0

(ω(2) − ω0
(2)

)

+
−𝐼

𝑎
ω𝑦0

(ω(3) − ω0
(3)

) +
−𝐼

𝑎
(ω̇(1) − ω̇0

−(1)
) +

1

𝑎
(𝑀𝐺)𝑥 (26)

 

For   ω𝑥0
= ω𝑦0

= ω𝑧0
= (𝑀𝐺)𝑥 = 0; 

ω̇𝑥 = −
𝐼

𝑎
ω̇(1) (27) 

For second line in equation (23), the Taylor series expansion can be given as; 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑇0

ⅆ𝑇

ⅆω𝑥
|𝑥=𝑥0

ⅆ𝑇

ⅆ𝑤𝑧
|𝑥=𝑥0

ⅆ𝑇

ⅆω(1)
|𝑥=𝑥0

ⅆ𝑇

ⅆ𝑤(3)
|𝑥=𝑥0

ⅆ𝑇

ⅆ𝑤̇(2)
|𝑥=𝑥0

  
ⅆ𝑇

ⅆ(𝑀𝐺)𝑦
|𝑥=𝑥0]

 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐶 − 𝐴

𝑏
ω𝑥0

ω𝑧0

𝐶 − 𝐴

𝑏
ω𝑧0

(
𝐶 − 𝐴

𝑏
ω𝑥 −

𝐼

𝑏
ω(1)) |𝑥=𝑥0

=
𝐶 − 𝐴

𝑏
ω𝑥0

−
𝐼

𝑏
ω𝑧0

𝐼

𝑏
𝑤𝑥0

−
𝐼

𝑏
1

𝑏 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(28) 

So; 

ω̇𝑦 =
𝐶 − 𝐴

𝑏
ω𝑧0

ω𝑥 +
𝐶 − 𝐴

𝑏
ω𝑥0

ω𝑧 −
𝐼

𝑏
ω𝑧0

ω(1) +
𝐼

𝑏
ω𝑥0

ω(3) −
𝐼

𝑏
ω̇(2) +

1

𝑏
(𝑀𝐺)𝑦 (29) 

For   ω𝑥0
= ω𝑦0

= ω𝑧0
= (𝑀𝐺)𝑦 = 0 

ω̇𝑦 = −
𝐼

𝑏
ω̇(2) (30) 

For first line in equation (23), the Taylor series expansion can be given as; 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑇0

ⅆ𝑇

ⅆω𝑥
|𝑥=𝑥0

ⅆ𝑇

ⅆω𝑦
|𝑥=𝑥0

ⅆ𝑇

ⅆω(1)
|𝑥=𝑥0

ⅆ𝑇

ⅆω(3)
|𝑥=𝑥0

ⅆ𝑇

ⅆω̇(3)
|𝑥=𝑥0

ⅆ𝑇

ⅆ(𝑀𝐺)𝑧0

|𝑥=𝑥0]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐴 − 𝐵

ⅆ
ω𝑥0

ω𝑦0

𝐴 − 𝐵

ⅆ
ω𝑦0

𝐴 − 𝐵

ⅆ
ω𝑥0

𝐼

ⅆ
ω𝑦0

−𝐼

ⅆ
ω𝑥0

−
𝐼

ⅆ
1

ⅆ ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(31) 

so; 

ω̇𝑧 =
𝐴 − 𝐵

ⅆ
ω𝑦0

ω𝑥 +
𝐴 − 𝐵

ⅆ
ω𝑥0

ω𝑦 +
𝐼

ⅆ
ω𝑦0

ω(1) −
𝐼

ⅆ
ω𝑥0

ω(2) −
𝐼

ⅆ
ω̇(3) +

1

ⅆ
(𝑀𝐺)𝑧 (32) 

For   ω𝑥0
= ω𝑦0

= ω𝑧0
= (𝑀𝐺)𝑧 = 0 

ω̇𝑧 = −
𝐼

ⅆ
ω̇(3) (33) 
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Calculation of PID Control Coefficients 

Using the linearized system from the previous section, the PID coefficients were calculated 

manually to meet the desired system performance. Given the requirements of a 4 second settling time 

and 10% overshoot, the coefficients were determined as follows: 

P. O = 100𝑒
−

𝜁𝜋

√1−𝜁2
= 10 => 𝜁 = 0.59 (34)

 

𝑇𝑠 =
4

𝜁𝜔𝑛
= 4 => 𝜔𝑛 = 1.69 (35) 

Transfer function of the equation (27) can be written as; 

𝐺(𝑠) =
𝜔𝑥(𝑠)

𝜔(1)(𝑠)
= −

𝐼

𝑎
= −

𝐼

𝐼 + 𝐴 + 2𝐽
= −

1

207
(36) 

where 𝐼 = 1, 𝐴 = 200 & 𝐽 = 3. 

The DC motor is also integrated into the system, which is represented by the following transfer 

function: 

𝑃(𝑠) =
𝜃̇(𝑠)

𝑉(𝑠)
=

𝐾

(𝐽𝑠 + 𝑏)(𝐿𝑠 + 𝑅) + 𝐾2
=

0.01

0.05𝑠2 + 0.06𝑠 + 0.1001
(37) 

The PID control structure is given as: 

𝐺𝑐(𝑠) =
𝐾ⅆ𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖

𝑠
(38) 

Hence, the spacecraft system closed loop transfer function is determined as: 

𝑇(𝑠) =
𝐺𝑐(𝑠)𝑃(𝑠)𝐺(𝑠)

1 + 𝐺𝑐(𝑠)𝑃(𝑠)𝐺(𝑠)
(39) 

𝑇(𝑠) =
−0.01(𝐾ⅆ𝑠2 + 𝐾𝑝𝑠 + 𝐾𝑖)

10.35𝑠3 + (12.42 − 0.01𝐾ⅆ)𝑠2 + (20.72 − 0.01𝐾𝑝)𝑠 − 0.01𝐾𝑖

=

𝜔𝑛
2

(10.35𝑠 + 2.07)(𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛
2)

(40)

 

By comparing coefficients, the following values are obtained from equation (40): 

[

𝐾𝑝

𝐾𝑖

𝐾ⅆ

] = [
−5014
−5912
−2886

] (41) 

This method is used to obtain the PID coefficients for ω̇𝑥, can also be applied for ω̇𝑦 and ω̇𝑧. The 

linearized spacecraft system is constructed in the Simulink as given in Figure 1 and the determined 

control coefficients are implemented to the Simulink model as seen in Figure 2 to observe the control 

performance.  
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Afterwards, the calculated PID coefficients tested in nonlinear spacecraft system as shown in 

Figure 3 and Figure 4 to determine the control performances based on settling time, rise time, overshoot 

and Root Mean Square Error (RMSE). 

Figure 1 

Block Diagram of the Linear Control System 

 

 

Figure 2 

PID Structure 

 
 

Figure 3 

Block Diagram of the Nonlinear Control System 
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Figure 4 

Block Diagram of the Nonlinear System 

 
 

RESULTS 

The PID controller coefficients derived from the linearized system were successfully 

implemented in both the linear and original nonlinear spacecraft models. Simulation results demonstrate 

that the closed-loop system approximately satisfies the desired performance criteria. As shown in Table 

1, the linear model achieved a rise time of 0.7903 seconds, a settling time of 3.3236 seconds, and an 

overshoot of 21.324%, with a Root Mean Square Error (RMSE) of 4.61 × 10⁻⁵. In contrast, the nonlinear 

model exhibited a slightly longer rise time of 0.9882 seconds and a settling time of 4.1679 seconds, but 

with a significantly lower overshoot of 4.1679% and a reduced RMSE of 1.558 × 10⁻⁵. 

Figure 5 illustrates the angular velocity responses of both the linear and nonlinear systems in 

comparison to the reference signal. It is observed that while the linear model reacts faster, it introduces 

a higher overshoot. The nonlinear model, although slightly slower, exhibits a smoother and more 

accurate convergence to the desired value. 

These results confirm the successful application of the PID controller determined by using the 

linearized model. The nonlinear system benefits from enhanced stability and lower error. The 

comparison validates the practicality and effectiveness of applying PID coefficients derived from a 

linear approximation to a nonlinear spacecraft control scenario. 

Table 1 

Performance Comparison 

System Rising time Settling time Overshoot RMSE 

Linear Model 0.7903 3.3236 21.324 4.61 × 10−5 

Nonlinear Model 0.9882 4.1679 4.1679 1.558 × 10−5 
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Figure 5 

Control results of the nonlinear and linear system  

 

CONCLUSION 

This study developed and implemented a PID-based attitude control system for a spacecraft 

equipped with reaction wheels. By linearizing the nonlinear dynamic equations around an operating 

point and calculating the PID coefficients from the resulting transfer function, the control system was 

designed to achieve a desired dynamic performance. 

Simulation results demonstrated that the controller designed using the linear model performed 

effectively when applied to the original nonlinear system. While the linear model achieved faster 

response times, it resulted in higher overshoot. In contrast, the nonlinear model showed slightly longer 

settling and rising times but significantly lower overshoot and Root Mean Square Error (RMSE), 

indicating a more stable and precise system behavior. 

In this study, these results confirm that PID control, when designed based on a linearized model, 

can be successfully applied to nonlinear spacecraft systems. The proposed method offers a practical and 

energy-efficient solution for satellite attitude control. This approach provides groundwork for future 

works with more complex systems. 
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